JOURNAL OF COMPUTATIONAL PHYSICS 113, 347-352 (1994)

NOTE

An Evaluation of Expliéit Pseudo-Steady-State Approximation Schemes
for Stiff ODE Systems from Chemical Kinetics

1. INTRODUCTION

Systems of ordinary differential equations (QDEs)
describing chemical kinetics problems can be cast in the
special form

V= f(y)=Py)—L(y) ¥,

. (1)
YO =[y1(t); s y(D]7,

where

P(y) = [Pl(y)9 ey Pm(y)]-r»

2
and diag[L,(y), .-, L,,(»)] stands for the diagonal matrix
with entries L,(y) for k=1, .., m. The components P,(y)
and L, (y) y, are nonnegative and represent, respectively,
the production and loss rate for the £th “concentration” y,.
The reciprocal of L.(y) is the physical time constant or
characteristic reaction time for y,. In most applications the
range of time constants is large, which causes the ODE
system to be stiff. For simplicity of presentation we here
confine ourselves to the autonomous case. A chemical
kinetics problem will become non-autonomous when the
reaction constanis are made time-dependent. This occurs,
for exampie, in air pollution models involving temperature
dependent reaction rates. All schemes discussed can be
made non-autonomous in the usual way, either directly or
by treating time as a dependent variable.

Many applications, such as those from air pollution
modelling, give rise to a system of partial differential equa-
tions of the advection-diffusion-reaction type in which the
ODE system (1) occurs as the reaction part. A popular
approach for solving this kind of problems is operator
splitting. Splitting involves the numerical integration of (1)
at thousands of gridpoints, for each step of the operator
splitting method. Because the costs of integrating (1) then
readily dominate the total costs, one often applies so-called
pseudo-steady-state approximation (PSSA) or asymptotic
approximation schemes. Such schemes exploit the specific

form (1) and, in contrast to modern, general purpose stiff
solvers, they are explicit. Hence a PSSA scheme is extremely
cheap, per integration step. PSSA schemes also show
remarkably pgood stability, but can attain only low
accuracy. An example of an algorithm based on this
approach is CHEMEQ, which has been proposed by Young
and Boris [15, 16] and recommended in [11, 137]. Early
comparisons with the implicit backward differentiation
(Gear type) codes DIFSUB [15, 6] and EPISODE [11, 2]
are in favour of the PSSA approach and also in more recent
work this approach is still applied and advocated [8, 9, 17,
18].

The present paper reports on results which are less
favourable for PSSA, however. For a number of stiff QDEs
from atmospheric chemistry we have compared a simple,
easy-to-use PSSA solver with two state-of-the-art solvers
from the stiff ODE field, viz., the implicit Runge—Kutta code
RADAUS developed by Hairer and Wanner {7] and the
implicit backward differentiation code DASSL developed
by Petzold {1]. In spite of their considerable overhead
costs, our findings indicate that in most cases the implicit
codes can be made more efficient, even for the low accuracy
range that is of interest for reactive flow problems. In addi-
tion, the implicit codes prove also more reliable than the
PSSA solver we have applied.

2. PSSA SCHEMES

If P and L are constant, then (1) can be solved exactly,
1€,

yt+t)=e " y(e)+{I—e) LT'P. (3)

This suggests considering the associated integration scheme,
P = R(—1L") "+ t(R(—1L") = I)(—1L™") "' P,

t=[n+l—tns (4)

where p" is the approximation to p(r,), L"=L{(y"),
Pr=P(y"), and R(z)=¢" or a suitable consistent

0021-9991/94 $6.00

Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

348

approximation, ¢.g., a Padé¢ approximation. Note that (4} is
explicit because L” and R(—t1.”) are diagonal matrices. A
second attractive property is that nonnegative solutions are
generated for any 7> 0 if R(z) and (R(z)—1)/z are non-
negative for all z< 0.

If P(y)and L,(p) vary very slowly, it is obvious that
scheme (4) makes sense as a replacement of (3). This is the
case when we are sufficiently close to the steady state value
P, /L. Due to the fact that for any given value y}, the new
approximation y;*! — P, /L, for tL, — o0, if R(—o0)=0,
scheme (4) is called a PSSA scheme or asymptotic
approximation scheme. Scheme {(4) is consistent of order
one, because if we substitute the exact solution value y(¢,)
for y", we obtain

L=L(y(1,)),
(5)

Y =)+ () + Q(—TL) 1(s,),

and we see that first-order consistency holds for com-
ponents for which v < 1/L,, due to the fact that Q(z)=
(R(z)—z—1)/z=0(z), z— 0. This concerns the nonstiff
(t < 1/L,) components y,. For the other, stiff components,
the firsi-order consistency result is not true, since for these
the order relation for Q(z} cannot be imposed. In fact, we
have Q(z} ~ 1, uniformly in z €0, so that for the stiff com-
ponents a zero consistency order holds. This provides an
example of local order reduction (see [4, Chap. 7]). Of
course, close to equilibrium this reduction will not be felt.
However, if a component is not close to equilibrium and yet
% 1/L,, the PSSA scheme may introduce the steady state
too quickly. This indicates that the accuracy can be low and
unpredictable, to some extent, for large complicated chemi-
cal kinetics problems containing widely different time scales,

The above accuracy observations are local and what
counts is the global accuracy. The global accuracy depends
on the consistency properties, on the stability, and hence on
the precise way local errors accumulate to global ones. For
well-established implicit Runge-Kutta schemes we know
that in the transition from local to global, part of the local
errors due to stiffness is often annthilated [4]. For the PSSA
scheme a comprehensive error analysis seems not feasible, at
least not for general nonlinear systems (1). Qur practical
experience 15 that schemes like (4) perform remarkably weli
with respect to stability, at least when taking into account
that the stability is introduced solely by the diagonal matrix
L(y). However, albeit this may seem advantageous, it is also
dangerous for schemes which are inaccurate, because it
might give a false impression of reliability.

For nonstiff components second-order consistency can be
obtained with the scheme

yn+l=R(_th+1,"2) yn+T(R(_TLn+1,’2}_I)

x (_TLn+'lj2)—l Pn+1/2’

(6)

YERWER AND VAN LOON

provided that R(z) is second-order consistent and that the
diagonal matrix L"* 2 as yet undefined, satisfies

L7 = L{p(n)) + /2L (p(2,) V(1) + O(%), (7)
upon substitution of the true solution (and similar for
P"+1%) The second-order consistency follows from a
straightforward Taylor expansion. Note the resembiance
with (4). In particular, under the same conditions on R(z),
scheme (6) also guarantees nonnegative solutions.

Freedom exists in defining the intermediate values L"+ !/
and P"* ' If we put

L*V B =L((y"* " + y7)2),

8
PrER=P((ymt 4 y)2) ®

and select the second-order diagonal Padé approximation

R(z)={2+2)/(2—z), (9)

we in fact recover the classical, fully implicit midpoint rule.
Likewise, with (9} and

L7+ 12 = (L(y") 4 L™)/2,

n+1/2 __ " VR (10)
PrrE=(P(y") + P(y")2,

we obtain a third-order perturbation of the classical, fully
implicit trapezoidal rule given by

y"+1=y”+1’/2fﬂ+‘f/2f"+l+T/4(Ln+]—L")

®x ("= {11)
From the equivalent implicit form
yn+1 =yn+2T(4I+‘E(LR+1+L"))_l
X(P”+1*Ln+ly"+fn), (12)

the explicit, stiff corrector formula used in CHEMEQ
[11, 16] is derived. Let {"*! denote a predicted value and
y" ! the associated corrected one. This explicit stiff correc-
tor then reads

=y 2 LT)+ L)

X (P =LY+ 7). (13)

Note that L"*'p" is replaced by L"y" and not by
L{"+'y y". In [15; 13, p. 161] the implicit form
y"“=(T"+1+T”+rI)_1 [(Tn+l+Tn_TI) yn

+%T(Tn+l+Tn}(Pn+l+Pn)], (14)

EXPLICIT PSEUDQ-STEADY-STATE APPROXIMATION SCHEMES

is used, where T7 = (L") !, ie., the diagonal matrix of time
constants. This formula is equivalent to (11) and (12), as it
is also obtained from (6) and (9) by substitution of
7712 = (L** Y2y~ and by using definition (10) for P"+ 172
and T"+172,

We are not in favour of starting from (12) or (14), simply
because (9) does not decay like ° for z < 0. Hence, small
perturbations from the equilibrium state are no longer
rapidly damped for tL; — o0, which is the clue of the PSSA
approach. Also note that (9) does not guarantee a non-
negative solution for all values of the stepsize 7. A more
obvious choice is the second-order subdiagonal Padé
approximation

(15)

since this one nicely mimics the damping of e® for z < 0 and
also guarantees nonnegativity for (4) and (6). Trivially, one
could use the exponential itself, like in [9], but this may
lead to zero divisions in the expression (R(z)—1)/z and
hence requires an additional check or modification. The use
of the approximation (15) avoids this.

The scheme for the PSSA solver that will be compared to
RADAUS and DASSL in Section 5 uses (15) and can now
be defined. It has two stages. In stage one, the predictor
stage, we apply (4). In stage two, the corrector stage, we
apply (6), (10) while the first stage result {"* ' is substituted

fOfyn+1,
(I+Z+3Z3) !
=y"+t(I+32)P", Z=1L" 16)
(J+Z+3Z%) y!
=y +r(I+32Z) PR, Z=1L"P,
where L"*Y2 = H{L"+ L({"*")) and P"*'7 = 3(P" 4

P(£"*')). One may also use (8} instead of (10). Numerical
tests have reveated that this leads to only minor differences.
Note that for components for which L,(y)=0, stage one
yields the explicit Euler formula and stage two the explicit
trapezoidal rule.

All experiments discussed in Section 5 have been repeated
with (16) replaced by the two-stage scheme

(T+Z){" =y 4 2P, Z=1L"
Y =max{0, y"+ 2v(dl + t(L") + L) !
X (P =Ly + /™)) (17)
of which stage two comes from (13) and stage one results
from (4) by defining R(z) = 1/(1 — z). The stage one formula

1s the predictor used in CHEMEQ. In all our experiments,
(16} did perform notably better than this CHEMEQ pair.

581/113/2-14

349

The difference in performance is due to the difference in
asymptotic behaviour between the stability functions (9)
and (15). In the remainder of this article results will only be
given for (16).

Finally we note that in PSSA algorithms one usually
assigns a steady state value P,/L, to components y, for
values of 7L, larger than a certain threshold. Similarly, for
values of tL, smaller than a second threshold, simple
explicit integration formulas are introduced to replace the
PSSA formulas. For large chemical systems a sensible
choice of these thresholds is, in general, not an easy task. By
using (15) there is less need to either, simply because for
1L, — oo the exponential damping to steady slate is
assured, while for 1L, — 0 the usual order concept applies
and then the PSSA formulas behave as accurate as standard
explicit formulas of the same order. In fact, these two limit
cases are dealt with sufficiently accurately in the PSSA
approach. However, for components not yet in steady state
intermediate values of 7L,, associated with intermediate
time constants, may give rise to less accurate results, due to
the fact that the size of tL, influences the local truncation
error in a manner similar as outlined for formula (4).

3. CONNECTIONS WITH RUNGE-KUTTA METHODS

For (most) implicit RK methods, having R(z) as stability
function, (4) results after one modified Newton iteration if
y" is taken as the start vector and L” as the (very crude)
approximate Jacobian. Scheme (4) is also known as the
most simple example of a RK-Rosenbrock or linearly
implict RK method [14, Chap. 4], when L” is again inter-
preted as an approximate Jacobian. Also the most simple
W-method [7, Section 1V.7] can be brought in the form (4).
Along the RK line it thus is possible to consider the applica-
tion of PSSA type schemes of classical order higher than
two. To see whether this could be advantageous, we have
implemented the third-order, L-stable W-method W3L
from [12], using L” in all its four stages as the approximate
Jacobian. Unfortunately, the performance of this explicit
W3L turned out to be rather disappointing compared to the
second-order PSSA scheme (16) (therefore no test results
will be given for W3L). The main reasons are that W3L is
roughly a factor three more expensive, per step, while it also
generates negative solutions. Because the number of con-
sistency conditions to be fulfilled increases very rapidly with
the order, no further attempts have been made towards a
scheme of order four or higher.

4. FOUR SOLVERS

We have experimented with four solvers, here called
PSSA, RADAU, DASSL, and TRAP. PSSA is based on
(16). The difference E"*! = y"+' — "+ 145 used as the local
error estimator. Recall that the classical order of the two

350

stages is one and two, respectively. Because the classical
order concept is of limited value here (cf. Section 2), E"*+'
will act as a crude estimate. However, for our comparison
purpose E "+1is good enough. Define

|E"* 1l = max (|EZ™ 11/ W),
(18)
W, =ATOL + RTOL |y}[,

where ATOL and RTOL are the absolute and relative error
tolerance. If [E”*'|,<1, then the integration step is
accepted and otherwise rejected. The new stepsize 1, 1S
estimated by

Toew = max(0.2, min(8.0, 08/\/[E" ")) T (19)

Hence the stepsize ratio is constrained by 0.2 and 8.0, which
means that we allow a very rapid increase or decrease. It
should be stressed that this is a highly desirable feature in
the setting of operator splitting, due to the necessary restart
within every operator splitting step. We copied these growth
factors from the stepsize control from RADAUS.

To obtain a safe guess for the initial stepsize, we replace
E"*'in (3.1) by t/(»°) and define 7 such that the weighted
error norm is equal to 1, i.e.,

W, =ATOL +RTOL |3%).
(20}

r=mkin (W1

Hence the initial step is chosen such that the first Taylor
term 7 f(p*) satisfies the absolute/relative tolerance require-
ment. If this still results in a step rejection, we divide the
initial guess by 10.0 until acception follows and then
proceed as usual (cf. the RADAUS strategy). Normally,
however, (20) will lead to a rather small initial guess,
which will be accepted and subsequently rapidly increased
according to (19).

RADAUS is the Nov. 14, 1989 version of the solver
discussed in [7] and DASSL [1] is the double precision
version DDASSL taken from netlib [5]. Both codes possess
their own strategies and we have applied them as black
boxes using only default options, except that the initial step-
size is determined by (20). Hence any possibility to let them
run faster has been omitted. For example, the Jacobian
matrix is computed numerically and always treated as a full
matrix. ‘Note that both can produce negative solution
values. However, in the experiments reported here this has
never been a problem.

TRAP is based on the explicit trapezoidal rule

Cn+1=yn+tf'n’

(21)
Y=yt (T4 S

VERWER AND VAN LOON

and chooses its stepsizes in precisely the same way as PSSA.
We have used TRAP to assess in a simple way the degree of
stiffness of the example problems. As a solver for stiff
problems TRAP makes no sense, of course, due to the
severe stability restriction. Note, however, that per
integration step the costs of PSSA and TRAP are highly
comparable, so that PSSA can be compared to TRAP to
illustrate the large gain in stability of the explicit pseudo-
steady-state formulas over standard explicit ones like (21).

5. THE NUMERICAL COMPARISON

We have sclected three example problems from
atmospheric chemistry, here called ATMOS7, ATMOS12,
and ATMOS20 (the integer denotes the dimension).
ATMOS7 is an atmospheric chemical relaxation test
problem involving cesium and cesium ions. We borrowed
this problem from {15, 16], where it is used to illustrate
CHEMEQ. The two problems ATMOS12 and ATMOS20
emanate from an air pollution study and were borrowed
from [10, 9], respectively. A complete specification of the
problems is given in the appendix of the preprint to this
paper which can be obtained from the first author.

In the tables of results we give the values (sd, cpu, steps),
where sd is the number of significant digits for the maximum
relative error,

n —_ T
sd = — Plog (max M), (22)

kT

cpu is the CPU time in seconds, and steps is the number of
accepted plus rejected integration steps. Steps and cpu serve
to measure the efficiency. Although cpu is an approximate
value and implementation- and machine-dependent, the
given values are good enough for comparison purposes
{they have been checked by repeating all experiments
several times). We confine ourselves to giving CPU times, in
addition to steps, as it is not feasible to discuss and compare
the full statistics of all integrations, due to a too widely dif-
fering workload of the three solvers. While the costs per step
of PSSA can be expressed, approximately, as two f(y)-
evaluations, similar for the two-stage explicit trapezoidal
rule (21), the costs of the implicit solvers DASSL and
RADAU are dominated by the numerical algebra overhead
arising from the iterative modified Newton solution of the
encountered systems of nonlinear algebraic equations. This
overhead cannot be expressed in a simple cost unit per step,
as it consists of Jacobian updates, of LU-decompositions,
and of backsolves, which, in addition, for RADAU are also
more expensive than for DASSL (see {7, Section IV.8]).
Also note that the numbers of Jacobian updates and
LU-decompositions always differ from the number of
integration steps.

EXPLICIT PSEUDO-STEADY-STATE APPROXIMATION SCHEMES

We also tabulate the initial stepsize 1, and the length T of
the integration interval. For simplicity we have used one set
of tolerances in all experiments with PSSA, RADAU, and

351

TABLE I1
The Values (sd, cpu, steps) for ATMOS12 with T=120

DASSL, viz.

ATOL =10"°TOL,

TOL=10"'

for

. RTOL=TOL,

i=1,2,34.

(23)

(TOL, 1,) PSSA RADAUS DASSL
{(1071,25,,-s) (0.77,0.003, 18) (0.21,008,25) (1.37,0.04, 30)
(1072,2.5,06) {0.94,0006, 38) (1.89,005 19) (1.59,005, 49)
(103,25, (1.22,0020,130) (3.12,006,23) (267,007, 77)
(1074 2.5,,-+) (2.14,0.090, 595) (4.16,009,32) (3.48,0.09, 112)

It should be emphasized that for reactive flow problems a
low level of accuracy suffices, say 1% (sd=2). A higher
level is redundant due to errors made in other (operator
splitting) processes and uncertainties in the reaction con-
stants of the chemistry model.

To assess the degree of stiffness of the three test problems,
we have first applied TRAP using the tolerances RTOL =
ATOL=0.1, For these tolerances the stepsizes for
ATMOS12 and ATMOS20 are completely restricted by
stability, for all times. For ATMOS12 the variable stepsize
mechanism selects as the maximum stable stepsize 2.0,,-,
approximately, which indicates a Lipschitz constant for the
right-hand side function of approximately 10° For
ATMOS20 these approximate values are, respectively,
1.3,5-7 and 1.5,,+7. Hence, both are excessively stiff. For
ATMOS12 and ATMOS20 the explicit solver TRAP would
require a total of about 60 million and 460 million accepted
integration steps, respectively, over the selected time inter-
vals (see Tables II, IIT). ATMOS7 differs from the other two
problems, in the sense that for a number of components
production strongly dominates over part of the integration
steps. During these production steps the stepsize smoothly
increases from about 1.2,,-v to 2 maximum of about 3.25,
which is then maintained until the final time 7"= 1000.
When the maximum stepsize is reached, production has
stopped and the stepsize is determined solely by stability,
ATMOS?7 thus turns out to be only moderately stiff. The
integration for RTOL =ATOL =0.1 with TRAP requires
6305 accepted steps plus three rejected ones and delivers
sd =1.73,

The results for PSSA, RADAU, and DASSL have been
collected in Tables I-III. The following conclusions can be
made: The explicit solver PSSA really beats the explicit
solver TRAP, illustrating its much improved stability. In
fact, with respect to stability, PSSA compares well with the

TABLEI
The Values (sd, cpu, steps) for ATMOS7 with T=1000

implicit solvers. PSSA petforms well for ATMOS7 for
which it outperforms the two implicit solvers for TOL =
10~%,10~2. For the smaller values of TOL the implicit
codes become more efficient than PSSA due to their high
order. This is of minor relevance, though, as high accuracy
is redundant for the present application. The difference in
the number of time steps between the two implicit solvers is
due to the fact that RADAUS admits a larger stepsize
growth. As a result, for this problem RADAUS manages to
spent approximately the same CPU time as DASSL, despite
its larger numerical algebra overhead. For a larger dimen-
sion this may no longer be true.

For ATMOSI2 and ATMOS20 the situation is different
and less promising for PSSA, despite the larger problem
dimension which is a disadvantage for the implicit solvers in
view of the numerical algebra overhead. PSSA now returns
less accurate solutions and, hence, needs too many time
steps near the | % error level to beat the implicit solvers in
speed. For ATMOS12 the explicit PSSA code still performs
rather well, but for ATMOS20 the two implicit codes are
significantly faster near the 1% error level. We conjecture
that this is due to the presence of intermediate time con-
stants rendering the PSSA approach inaccurate (cf. the
remark at the end of Section 3). Clearly, the more com-
plicated the chemical scheme, the more intermediate time
constants can play this negative role. A closer inspection of
Tabie IT reveals that for ATMOS12 and a lower accuracy
level, say about sd = 1.0 or 10% error, PSSA still compares
favourably with both the implicit solvers. Unfortunately, for
ATMOS20 the advantage of the low costs of PSSA is not
borne out convincingly, not even at this rather low accuracy
level. Finally, the experiments of this section have been

TABLE 111
The Values (sd, cpu, steps) for ATMOS20 with T=60

(TOL, 7,) PSSA RADAUS DASSL (TOL, 1,) PSSA RADAUS DASSL

(1075, 1.6,0-u) (1.53,0012, 116) (1.82,0.08,49) (1.43,009,134) (10-.,47,-=) (0.09,0006, 29) (208,0.13,20) (1.20,0.10, 42)
(1073 1.6,0-5) {244, 0.051, 456) (2.82,009,49) (1.97,0.10,175) (107%47,0-w) (0.41,0024, 123) (4.17,0.14,23) (2.09,0.12, 69)
(102 1.6,0-0) (3.43,0.182, 1639) * (3.89, 0,11, 61) (3.66,0.15,265) {107, 47,0-%) (1.13,0.133, 676} (4.86,0.20,32) (3.56,0.17, 108)
(1074 1.6,0-1) (4.41,0610, 5479} (5.63,0.14,92) (3.96,021,356) (107 47,5-0) (227,0.930,4700) (5.19,0.31,48) (4.06,0.24, 173}

352

repeated with the time interval halved. No notable differen-
ces with the results obtained on the original intervals were
observed.

6. FINAL REMARKS

Two more chemical reaction kinetics problems have been
experimented with, viz,, the eight-species problem HIRES
used as a test example in [7] and a 12-species chemical
pyrolysis problem from [3] These experiments again
favour the implicit approach. We should aiso recall that
common implicit integration formulas are conservative. The
conservation error generated by implicit solvers only
depends on the accuracy at which the implicit equations are
solved. On the other hand, PSSA schemes are not conser-
vative and therefore may easily generate larger conservation
EITOors.

Despite their better performance and robustness, it is
clear that standard implicit solvers will still require an enor-
mous amount of CPU time in a reactive flow calculation
where the chemical equations must be integrated at
thousands of grid points at many operator splitting steps.
Therefore, more research into fast implicit chemical
integrators for reactive flow problems is needed. This
research should be directed towards reducing the numerical
algebra overhead costs spent in solving implicit relations for
reactive flow calculations. Several possibilities to achieve
this goal are conceivable and we plan to report on the
subject in the near future.

ACKNOWLEDGMENTS

The research reported belongs to the project EUSMOG which is carried
out in cooperation with the Air Laboratory of the RIVM—The Dutch
National Institute of Public Health and Environmental Protection,
Bilthoven. The RIVM is acknowledged for financial support.

REFERENCES

1. K. E. Brenan, 8. L. Campbell, and L. R. Petzold, Numerical Solution of
Initial-Value Problems in Differential-Algebraic Equations (North-
Holland, Amsterdam, 1989).

VERWER AND VAN LOON

2. G. D. Byrne and A. C. Hindmarsh, ACM Trans. Math. Software 1, 71
(1975),

3. A. K. Daita, Technical Report MSH/67/84, Tmperial Chemical
Industries, Cheshire, 1967 (unpublished).

4. K. Dekker and J. G. Verwer, Stability of Runge—Kutta Methods for
Stiff Nonlinear Differential Equations (North-Holland, Amsterdam,
1984).

5. 1. J. Dongarra and E, Grosse, Commun. ACM 30, 403 {(1987).

6. C. W. Gear, Commun. ACM 14, 185 {1971).

7. E. Hairer and G. Wanner, Sofving Ordinary Differential Equations. 1.
Stiff and Differential-Algebraic Problems {Springer-Verlag, New York/
Berlin, 1991).

8. @. Hov, Z. Zlatev, R. Berkowicz, A. Eliassen and L. P. Prahms, Ammos.
Environ. 23, 967 (1989).

9. F. A. A. M. de Lecuw, Report 228603005, National Institute of Public
Health and Environmental Protection {RIVM), Bilthoven, The
Netherlands, 1988 (unpublished).

10. F. A. A. M, de Leeuw, private communication, National Institute of
Public Health and Environmental Protection (RIVM), Bilthoven, The
Netherlands, 1993,

11. G. J. McRae, W. R. Goodin, and J. H. Seinfeld, J. Comput. Phys. 45,
1 {1982).

12. A. Ostermann, Dissertation, Universitit Innsbruck, 1988 (unpublished).

13. E. 8. Oran and J. P. Boris, Numerical Simulation of Reactive Flow
(Elsevier, Amsterdam/New York, 1987).

14. K. Strehmel and R. Weiner, Linear-implizite Runge—Kutra Methoden
und ihre Anwendung, Teubner Texte zur Mathematik, Band 127
(Teubner, Stuttgart/Leipzig, 1992).

15. T. R. Young and 1. P, Boris, J. Phys. Chem. 81, 2424 (1977).

16. T. R. Young, NRL Memorandum Report 4091, Naval Research
Laboratory, Washington, DC, 1979 {unpublished).

17. Z, Zlatev and J. Wasniewski, Report UNIC-92-03, Scientific Com-
puting Group, Danmarks EDB-Center for Forskning og Uddannelse,
1992 (unpublished).

18. Z. Zlatev,). Christensen, and @. Hov, J. Atmos. Chem. 15; 1 (1992).

Received August 3, 1993; revised January 13, 1994

1. G. VERWER
M. van LooN

Center for Mathematics and Compurer Science
P.O. Box 94079, 1090 GB Amsterdam
The Netherlands

